#NPsychPick of the Month – Developing an understanding of the Frontal Lobe Paradox through clinical group discussions. Copstick, Sue Turnbull, Lorraine Bobbie Tibbles, Jennifer Ashworth, Sarah Swanepoel, Henk J. Kinch, Julianne Moffitt, Jenna. The Neuropsychologist November 2023 via NPsych

The Neuropsychologist 16

Developing an understanding of the Frontal Lobe Paradox through clinical group discussions.

Copstick, Sue Turnbull, Lorraine Bobbie Tibbles, Jennifer Ashworth, Sarah Swanepoel, Henk J. Kinch, Julianne Moffitt, Jenna.

#NPsychPick of the Month

Abstract

This discussion paper presents reflections from a group of clinical, forensic and neuropsychologists on their clinical caseloads in brain injury rehabilitation services at Cygnet Healthcare. These services specialise in working with people with coexisting mental health or behavioural difficulties where the work involves frequent staff discussions on interpreting an individual’s behaviour, considering its functions and whether it is part of an involuntary neuro-psychological disorder related to their brain injury, specifically the Frontal Lobe Paradox. Through consideration of six patients, the cognitive mechanisms that may relate to, or underlie apparent Frontal Lobe Paradox were highlighted. Several additional reasons were found to explain why people might show this paradox, including testing conditions, slowed processing, reduced attention, disinhibition, self-monitoring problems, and premorbid difficulties. The authors also discuss interventions, which could be used to support these individuals, with the aim of broadening clinical understanding and discussion surrounding the causes of, and treatment approaches for individuals presenting with potential Frontal Lobe Paradox.

Read more…

#NPsychPick of the Month: Use of smartphones and tablets after acquired brain injury to support cognition. Disabil. Rehabil.: Assist. Technol. April 2023

NPsych Pick of the Month: April 2023

Use of smartphones and tablets after acquired brain injury to support cognition

Journal: Disability and Rehabilitation: Assistive Technology, 2023

Objectives

To describe the use of mobile devices after acquired brain injury (ABI), from the perspectives of injured individuals and significant others, and to examine factors associated with mobile device use for cognition.

Methods

Cross-sectional study with 50 adults with moderate/severe traumatic brain injury or stroke (42% women; mean of 50.7 years old, 4.6 years post-ABI), and 24 significant others. Participants completed questionnaires on mobile technology, cognitive functioning and the impact of technology.

Results

Of 45/50 adults with ABI who owned a smartphone/tablet, 31% reported difficulties in using their device post-injury, 44% had received support, and 46% were interested in further training. Significant others reported motor/visual impairments and the fear of becoming dependent on technology as barriers for mobile device use, and 65% mentioned that their injured relative needed additional support. Mobile device use for cognition was common (64%), predicted in a regression model by lower subjective memory and more positive perception of the psychosocial impacts of technology, and also associated in univariate analyses with younger age, lower executive functioning, and greater use of memory strategies.

Conclusion

Using mobile devices for cognition is common post-ABI but remains challenging for a significant proportion. Developing training approaches may help supporting technology use.

  • IMPLICATIONS FOR REHABILITATION

  • Using mobile electronic devices (smartphones and tablets) is common after acquired brain injury (ABI) but is challenging for a significant proportion of individuals.

  • After the ABI, close to 50% of individuals receive support in using their mobile device, mostly from family members and friends, but rarely from rehabilitation clinicians or technology specialists.

  • In a sample of 50 adults with ABI, more frequent use of mobile devices to support cognition was associated with poorer subjective memory and executive functioning, greater use of memory strategies, more positive perception of the psychosocial impacts of technology, and younger age.

Click here to go to the article

Efficacy of Postacute Neuropsychological Rehabilitation for Patients with Acquired Brain Injuries is Maintained in the Long-Term. J Int Neuropsych Soc, Jan 2020

Postacute NR programs provide participants with various tools, skills, and psychological perspectives that they continue to gain from and generalize to real life after program completion, reflecting transformational processes with stable long-term benefits

Effects of animal-assisted therapy on social behaviour in patients with acquired brain injury: a randomised controlled trial. Scientific Reports, 2019.

Effects of animal-assisted therapy on social behaviour in patients with acquired brain injury: a randomised controlled trial.

Karin Hediger, Stefan Thommen, Cora Wagner, Jens Gaab & Margret Hund-Georgiadis. Nature: Scientific Reports, volume 9, Published: 09 April 2019.
https://www.nature.com/articles/s41598-019-42280-0

Abstract
Animal-assisted therapy (AAT) is increasingly used to address impaired social competence in patients with acquired brain injury. However, the efficacy of AAT has not been tested in these patients. We used a randomised, controlled within subject trial to determine the effects of AAT on social competence in patients undergoing stationary neurorehabilitation. Participants received both AAT sessions and paralleled conventional therapy sessions. The patients’ social behaviour was systematically coded on the basis of video recordings of therapy sessions. Moreover, mood, treatment motivation and satisfaction was measured during each therapy session. We analysed 222 AAT and 219 control sessions of 19 patients with linear mixed models. Patients showed a significantly higher amount of social behaviour during AAT. Furthermore, patients’ positive emotions, verbal and non-verbal communication, mood, treatment motivation and satisfaction were increased in the presence of an animal. Neutral emotions were reduced but no effect was found regarding negative emotions. Our results show that AAT increases aspects of social competence and leads to higher emotional involvement of patients with acquired brain injury, reflected in higher social engagement, motivation and satisfaction during a therapeutic session.

Helmet use in preventing acute concussive symptoms in recreational vehicle related head trauma. Brain Injury, 2019

Helmet use in preventing acute concussive symptoms in recreational vehicle related head trauma

Marco Daverio, Franz E Babl, Ruth Barker, Dario Gregori, Liviana Da Dalt & Silvia Bressan

Pages 335-341, Brain Injury. Published online: 22 Jan 2018

https://doi.org/10.1080/02699052.2018.1426107

ABSTRACT
Objectives: Helmets use has proved effective in reducing head trauma (HT) severity in children riding non-motorised recreational vehicles. Scant data are available on their role in reducing concussive symptoms in children with HT while riding non-motorised recreational vehicles such as bicycles, push scooters and skateboards (BSS). We aimed to investigate whether helmet use is associated with a reduction in acute concussive symptoms in children with BSS-related-HT.

Methods: Prospective study of children <18 years who presented with a BSS related-HT between April 2011 and January 2014 at a tertiary Paediatric Emergency Department (ED).

Results: We included 190 patients. Median age 9.4 years (IQR 4.8–13.8). 66% were riding a bicycle, 23% a push scooter, and 11% a skateboard. 62% were wearing a helmet and 62% had at least one concussive symptom. Multivariate logistic regression analysis adjusting for age, gender, and type of vehicle showed that patients without a helmet presented more likely with headache (adjusted odds-ratio (aOR) 2.54, 95% CI 1.27–5.06), vomiting (aOR 2.16, 95% CI 1.00–4.66), abnormal behaviour (aOR 2.34, 95% CI 1.08–5.06), or the presence of at least one concussive symptom (aOR 2.39, 95% CI 1.20–4.80).

Conclusions: In children presenting to the ED following a wheeled BSS-related HT helmet use was associated with less acute concussive symptoms.

ABBREVIATIONS: aOR, adjusted odds ratio; APHIRST, Australasian Paediatric Head Injury Rules Study; BSS, bicycles, push scooters and skateboards; CI, confidence interval; CT, computed tomography; ED, emergency department; HT, head trauma; IQR, interquartile range; OR, odds ratio; RCH, Royal Children’s Hospital; RV, recreational vehicle.

 

Risk of Posttraumatic Stress Disorder and Major Depression in Civilian Patients After Mild Traumatic Brain Injury A TRACK-TBI Study. JAMA Psychiatry 2019

Risk of Posttraumatic Stress Disorder and Major Depression in Civilian Patients After Mild Traumatic Brain Injury A TRACK-TBI Study.

Stein, Sonia Jain, Giacino et al. JAMA Psychiatry. 2019; 76(3):249-258.

https://doi.org/10.1001/jamapsychiatry.2018.4288

Published online: January 30, 2019

Abstract

Importance  Traumatic brain injury (TBI) has been associated with adverse mental health outcomes, such as posttraumatic stress disorder (PTSD) and major depressive disorder (MDD), but little is known about factors that modify risk for these psychiatric sequelae, particularly in the civilian sector.

Objective  To ascertain prevalence of and risk factors for PTSD and MDD among patients evaluated in the emergency department for mild TBI (mTBI).

Design, Setting, and Participants  Prospective longitudinal cohort study (February 2014 to May 2018). Posttraumatic stress disorder and MDD symptoms were assessed using the PTSD Checklist for DSM-5 and the Patient Health Questionnaire-9 Item. Risk factors evaluated included preinjury and injury characteristics. Propensity score weights-adjusted multivariable logistic regression models were performed to assess associations with PTSD and MDD. A total of 1155 patients with mTBI (Glasgow Coma Scale score, 13-15) and 230 patients with nonhead orthopedic trauma injuries 17 years and older seen in 11 US hospitals with level 1 trauma centers were included in this study.

Main Outcomes and Measures  Probable PTSD (PTSD Checklist for DSM-5 score, ≥33) and MDD (Patient Health Questionnaire-9 Item score, ≥15) at 3, 6, and 12 months postinjury.

Results  Participants were 1155 patients (752 men [65.1%]; mean [SD] age, 40.5 [17.2] years) with mTBI and 230 patients (155 men [67.4%]; mean [SD] age, 40.4 [15.6] years) with nonhead orthopedic trauma injuries. Weights-adjusted prevalence of PTSD and/or MDD in the mTBI vs orthopedic trauma comparison groups at 3 months was 20.0% (SE, 1.4%) vs 8.7% (SE, 2.2%) (P < .001) and at 6 months was 21.2% (SE, 1.5%) vs 12.1% (SE, 3.2%) (P = .03). Risk factors for probable PTSD at 6 months after mTBI included less education (adjusted odds ratio, 0.89; 95% CI, 0.82-0.97 per year), being black (adjusted odds ratio, 5.11; 95% CI, 2.89-9.05), self-reported psychiatric history (adjusted odds ratio, 3.57; 95% CI, 2.09-6.09), and injury resulting from assault or other violence (adjusted odds ratio, 3.43; 95% CI, 1.56-7.54). Risk factors for probable MDD after mTBI were similar with the exception that cause of injury was not associated with increased risk.

Conclusions and Relevance  After mTBI, some individuals, on the basis of education, race/ethnicity, history of mental health problems, and cause of injury were at substantially increased risk of PTSD and/or MDD. These findings should influence recognition of at-risk individuals and inform efforts at surveillance, follow-up, and intervention.

Combining H-FABP and GFAP increases the capacity to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury. PLoS ONE, 2019

Lagerstedt L, Egea-Guerrero JJ, Bustamante A, Rodríguez-Rodríguez A, El Rahal A, Quintana-Diaz M, et al. (2018) Combining H-FABP and GFAP increases the capacity to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury. PLoS ONE 13(7): e0200394.

https://doi.org/10.1371/journal.pone.0200394

Abstract:

Mild traumatic brain injury (mTBI) patients may have trauma-induced brain lesions detectable using CT scans. However, most patients will be CT-negative. There is thus a need for an additional tool to detect patients at risk. Single blood biomarkers, such as S100B and GFAP, have been widely studied in mTBI patients, but to date, none seems to perform well enough. In many different diseases, combining several biomarkers into panels has become increasingly interesting for diagnoses and to enhance classification performance.

The present study evaluated 13 proteins individually—H-FABP, MMP-1, MMP-3, MMP-9, VCAM, ICAM, SAA, CRP, GSTP, NKDA, PRDX1, DJ-1 and IL-10—for their capacity to differentiate between patients with and without a brain lesion according to CT results. The best performing proteins were then compared and combined with the S100B and GFAP proteins into a CT-scan triage panel. Patients diagnosed with mTBI, with a Glasgow Coma Scale score of 15 and one additional clinical symptom were enrolled at three different European sites. A blood sample was collected at hospital admission, and a CT scan was performed. Patients were divided into two two-centre cohorts and further dichotomised into CT-positive and CT-negative groups for statistical analysis. Single markers and panels were evaluated using Cohort 1.

Four proteins—H-FABP, IL-10, S100B and GFAP—showed significantly higher levels in CT-positive patients. The best-performing biomarker was H-FABP, with a specificity of 32% (95% CI 23–40) and sensitivity reaching 100%. The best-performing two-marker panel for Cohort 1, subsequently validated in Cohort 2, was a combination of H-FABP and GFAP, enhancing specificity to 46% (95% CI 36–55). When adding IL-10 to this panel, specificity reached 52% (95% CI 43–61) with 100% sensitivity.

These results showed that proteins combined into panels could be used to efficiently classify CT-positive and CT-negative mTBI patients.

1 2
Facebook
Twitter
LinkedIn