HCPC registered psychologists with expertise and experience in neurorehabilitation. We offer services such as neuropsychological assessment NPsych

#NPsychPick of the Month: Applying EMDR therapy with clients who have impaired cognitive abilities, EMDR Therapy Quarterly, Summer 2023

Neuro EMDR: Applying EMDR therapy with clients who have impaired cognitive abilities

Author: Dr Jonathan Hutchins Simon Proudlock

EMDR therapy has been shown to be highly effective and time efficient in addressing trauma memories in both adults and children. However, there are questions about how EMDR can be effective with adults who have experienced a brain injury or are experiencing other cognitive difficulties. This article summarises some of the recent research within the area and proposes adaptations to the standard protocol that can be made to make best use of EMDR therapy in this population.

Introduction

Within the UK in 2019-2020 there were 356,669 UK admissions to hospital with acquired brain injury (ABI), or any brain injury that has occurred after birth including traumatic brain injury (TBI), stroke or brain tumours, which is a 12% increase since 2005-2006 (Headway, 2023). In 2019, there were approximately 977 TBI admissions per day to UK hospitals, one every 90 seconds. The diagnostic criteria for TBI on the DSM V states that there must be an “impact to the head or other mechanisms of rapid movement or displacement of the brain within the skull with one or more of the following: loss of consciousness, posttraumatic amnesia, disorientation and confusion, neurological signs such as neuroimaging demonstrating injury or a worsening of a pre-existing seizure disorder” (American Psychiatric Association, 2013).

Click here to go to the full article…

The Surprisingly Powerful Influence of Drawing on Memory

The Surprisingly Powerful Influence of Drawing on Memory by Myra A. Fernandes, Jeffrey D. Wammes, Melissa E. Meade. First Published August 30, 2018.

Abstract: The colloquialism “a picture is worth a thousand words” has reverberated through the decades, yet there is very little basic cognitive research assessing the merit of drawing as a mnemonic strategy. In our recent research, we explored whether drawing to-be-learned information enhanced memory and found it to be a reliable, replicable means of boosting performance. Specifically, we have shown this technique can be applied to enhance the learning of individual words and pictures as well as textbook definitions. In delineating the mechanism of action, we have shown that gains are greater from drawing than other known mnemonic techniques, such as semantic elaboration, visualization, writing, and even tracing to-be-remembered information. We propose that drawing improves memory by promoting the integration of elaborative, pictorial, and motor codes, facilitating the creation of a context-rich representation. Importantly, the simplicity of this strategy means it can be used by people with cognitive impairments to enhance memory, with preliminary findings suggesting measurable gains in performance in both normal aging individuals and patients with dementia.

Glial Fibrillary Acidic Protein as a Marker for Mild Traumatic Brain Injury

What’s the science?

Millions of cases of mild traumatic brain injury occur each year. Computed tomography (CT) scans are used to detect mild traumatic brain injury, and MRI can be used to detect subtle changes in the brain like neuron axonal injury, however these are costly and time-consuming. There is a need for a blood-based biomarker that can detect milder forms of brain injury to ensure proper treatment for these patients. This week in Neurology, Ori and colleagues test whether blood-based biomarkers are associated with neuroimaging changes (on CT and MRI scans) and can successfully detect mild traumatic brain injury.

How did they do it?

Four blood-based biomarkers have previously been associated with brain changes that follow traumatic brain injury of varying severities: Tau (a neuronal injury marker), Glial Fibrillary Acidic protein, ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) and neurofilament light. The authors aimed to assess whether any of these biomarkers would be elevated in mild traumatic brain injury and whether they were also associated with subtle structural changes shown on an MRI scan (using diffusion tensor imaging). A group of 277 patients seeking care for a mild brain injury were enrolled in the study. Blood was drawn to measure plasma concentrations of biomarkers and CT and MRI scans were performed within 48 hours of the injury. A control group of 49 healthy participants (with well-matched demographics) was included for comparison.
What did they find?

Glial Fibrillary Acidic protein, Tau and Neurofilament light were all higher in patients with mild traumatic brain injury compared to controls. Glial Fibrillary Acidic protein was the best predictor of mild traumatic brain injury (diagnosis). When patients with mild brain injury were stratified into those with and without changes on their CT scans, Glial Fibrillary Acidic protein, Tau and neurofilament light concentrations were all higher in patients with detectable changes. However, Glial Fibrillary Acidic protein concentration was the only biomarker that significantly predicted trauma-related CT scan changes. Glial Fibrillary Acidic protein, Tau and Neurofilament light all predicted structural MRI changes, however Glial Fibrillary Acidic protein was the strongest predictor of structural MRI changes related to mile traumatic brain injury.

What’s the impact?

This is the first study to examine whether blood-based biomarkers can be used to detect mild traumatic brain injury. Glial Fibrillary Acidic protein concentration is a sensitive predictor of mild traumatic brain injury and is also closely associated with neuroimaging changes. CT and MRI scans are expensive and time-consuming, so having methods to detect the presence and severity of brain injury early on is important for proper and effective treatment.

Gill et al (2018). Glial fibrillary acidic protein elevations relate to neuroimaging abnormalities acutely following a mild traumatic brain injury. Neurology, Sep 12, 2018.

Facebook
Twitter
LinkedIn