Examining Predictors of Real-World User Engagement with Self-Guided eHealth Interventions: Analysis of Mobile Apps and Websites Using a Novel Dataset. J Med Internet Res 2018

Examining Predictors of Real-World User Engagement with Self-Guided eHealth Interventions: Analysis of Mobile Apps and Websites Using a Novel Dataset

Amit Baumel, John M Kane. Journal of Medical Internet Research, Vol 20, No 12 (2018): December

doi:10.2196/11491

 

ABSTRACT

Background: The literature suggests that the product design of self-guided electronic health (eHealth) interventions impacts user engagement. Traditional trial settings, however, do not enable the examination of these relationships in real-world use.

 

Objective: This study aimed to examine whether the qualities of product design, research evidence, and publicly available data predict real-world user engagement with mobile and Web-based self-guided eHealth interventions.

 

Methods: This analysis included self-guided mobile and Web-based eHealth interventions available to the public—with their qualities assessed using the Enlight suite of scales. Scales included Usability, Visual Design, User Engagement, Content, Therapeutic Persuasiveness, Therapeutic Alliance, Credibility, and Research Evidence. Behavioral data on real-world usage were obtained from a panel that provides aggregated nonpersonal information on user engagement with websites and mobile apps, based on a time window of 18 months that was set between November 1, 2016 and April 30, 2018. Real-world user engagement variables included average usage time (for both mobile apps and websites) and mobile app user retention 30 days after download.

 

Results: The analysis included 52 mobile apps (downloads median 38,600; interquartile range [IQR] 116,000) and 32 websites (monthly unique visitors median 5689; IQR 30,038). Results point to moderate correlations between Therapeutic Persuasiveness, Therapeutic Alliance, and the 3 user engagement variables (.31≤rs≤.51; Ps≤.03). Visual Design, User Engagement, and Content demonstrated similar degrees of correlation with mobile app engagement variables (.25≤rs≤.49; Ps≤.04) but not with average usage time of Web-based interventions. Positive correlations were also found between the number of reviews on Google Play and average app usage time (r=.58; P<.001) and user retention after 30 days (r=.23; P=.049). Although several product quality ratings were positively correlated with research evidence, the latter was not significantly correlated with real-world user engagement. Hierarchical stepwise regression analysis revealed that either Therapeutic Persuasiveness or Therapeutic Alliance explained 15% to 26% of user engagement variance. Data on Google Play (number of reviews) explained 15% of the variance of mobile app usage time above Enlight ratings; however, publicly available data did not significantly contribute to explaining the variance of the other 2 user-engagement variables.

 

Conclusions: Results indicate that the qualities of product design predict real-world user engagement with eHealth interventions. The use of real-world behavioral datasets is a novel way to learn about user behaviors, creating new avenues for eHealth intervention research.

Efficacy of Interventions that Use Apps to Improve Diet, Physical Activity and Sedentary Behaviour: A Systematic Review. IJBNPA, 2016

Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: a systematic review.

Stephanie SchoeppeEmail author, Stephanie Alley, Wendy Van Lippevelde, Nicola A. Bray, Susan L. Williams, Mitch J. Duncan and Corneel Vandelanotte

International Journal of Behavioral Nutrition and Physical Activity. Published: 7 December 2016

 

Background

Health and fitness applications (apps) have gained popularity in interventions to improve diet, physical activity and sedentary behaviours but their efficacy is unclear. This systematic review examined the efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour in children and adults.

Methods

Systematic literature searches were conducted in five databases to identify papers published between 2006 and 2016. Studies were included if they used a smartphone app in an intervention to improve diet, physical activity and/or sedentary behaviour for prevention. Interventions could be stand-alone interventions using an app only, or multi-component interventions including an app as one of several intervention components. Outcomes measured were changes in the health behaviours and related health outcomes (i.e., fitness, body weight, blood pressure, glucose, cholesterol, quality of life). Study inclusion and methodological quality were independently assessed by two reviewers.

Results

Twenty-seven studies were included, most were randomised controlled trials (n = 19; 70%). Twenty-three studies targeted adults (17 showed significant health improvements) and four studies targeted children (two demonstrated significant health improvements). Twenty-one studies targeted physical activity (14 showed significant health improvements), 13 studies targeted diet (seven showed significant health improvements) and five studies targeted sedentary behaviour (two showed significant health improvements). More studies (n = 12; 63%) of those reporting significant effects detected between-group improvements in the health behaviour or related health outcomes, whilst fewer studies (n = 8; 42%) reported significant within-group improvements. A larger proportion of multi-component interventions (8 out of 13; 62%) showed significant between-group improvements compared to stand-alone app interventions (5 out of 14; 36%). Eleven studies reported app usage statistics, and three of them demonstrated that higher app usage was associated with improved health outcomes.

Conclusions

This review provided modest evidence that app-based interventions to improve diet, physical activity and sedentary behaviours can be effective. Multi-component interventions appear to be more effective than stand-alone app interventions, however, this remains to be confirmed in controlled trials. Future research is needed on the optimal number and combination of app features, behaviour change techniques, and level of participant contact needed to maximise user engagement and intervention efficacy.

https://doi.org/10.1186/s12966-016-0454-y

Facebook
Twitter
LinkedIn